广东11选5在线人工计划_广东11选5人工计划—广东11选5免费计划网

汇编语言入门教程—广东11选5

  文/阮一峰

  学习编程其实就是学高级语言,即那些为人类设计的计算机语言。

  但是,计算机不理解高级语言,必须通过编译器转成二进制代码,才能运行。学会高级语言,并不等于理解计算机实际的运行步骤。

  计算机真正能够理解的是低级语言,它专门用来控制硬件。汇编语言就是低级语言,直接描述/控制 CPU 的运行。如果你想了解 CPU 到底干了些什么,以及代码的运行步骤,就一定要学习汇编语言。

  汇编语言不容易学习,就连简明扼要的介绍都很难找到。下面我尝试写一篇最好懂的汇编语言教程,解释 CPU 如何执行代码。

  一、汇编语言是什么?

  我们知道,CPU 只负责计算,本身不具备智能。你输入一条指令(instruction),它就运行一次,然后停下来,等待下一条指令。

  这些指令都是二进制的,称为操作码(opcode),比如加法指令就是00000011。编译器的作用,就是将高级语言写好的程序,翻译成一条条操作码。

  对于人类来说,二进制程序是不可读的,根本看不出来机器干了什么。为了解决可读性的问题,以及偶尔的编辑需求,就诞生了汇编语言。

  汇编语言是二进制指令的文本形式,与指令是一一对应的关系。比如,加法指令00000011写成汇编语言就是 ADD。只要还原成二进制,汇编语言就可以被 CPU 直接执行,所以它是最底层的低级语言。

  二、来历

  最早的时候,编写程序就是手写二进制指令,然后通过各种开关输入计算机,比如要做加法了,就按一下加法开关。后来,发明了纸带打孔机,通过在纸带上打孔,将二进制指令自动输入计算机。

  为了解决二进制指令的可读性问题,工程师将那些指令写成了八进制。二进制转八进制是轻而易举的,但是八进制的可读性也不行。很自然地,最后还是用文字表达,加法指令写成 ADD。内存地址也不再直接引用,而是用标签表示。

  这样的话,就多出一个步骤,要把这些文字指令翻译成二进制,这个步骤就称为 assembling,完成这个步骤的程序就叫做 assembler。它处理的文本,自然就叫做 aseembly code。标准化以后,称为 assembly language,缩写为 asm,中文译为汇编语言。

  每一种 CPU 的机器指令都是不一样的,因此对应的汇编语言也不一样。本文介绍的是目前最常见的 x86 汇编语言,即 Intel 公司的 CPU 使用的那一种。

  三、寄存器

  学习汇编语言,首先必须了解两个知识点:寄存器和内存模型。

  先来看寄存器。CPU 本身只负责运算,不负责储存数据。数据一般都储存在内存之中,CPU 要用的时候就去内存读写数据。但是,CPU 的运算速度远高于内存的读写速度,为了避免被拖慢,CPU 都自带一级缓存和二级缓存。基本上,CPU 缓存可以看作是读写速度较快的内存。

  但是,CPU 缓存还是不够快,另外数据在缓存里面的地址是不固定的,CPU 每次读写都要寻址也会拖慢速度。因此,除了缓存之外,CPU 还自带了寄存器(register),用来储存最常用的数据。也就是说,那些最频繁读写的数据(比如循环变量),都会放在寄存器里面,CPU 优先读写寄存器,再由寄存器跟内存交换数据。

  寄存器不依靠地址区分数据,而依靠名称。每一个寄存器都有自己的名称,我们告诉 CPU 去具体的哪一个寄存器拿数据,这样的速度是最快的。有人比喻寄存器是 CPU 的零级缓存。

  四、寄存器的种类

  早期的 x86 CPU 只有 8 个寄存器,而且每个都有不同的用途。现在的寄存器已经有 100 多个了,都变成通用寄存器,不特别指定用途了,但是早期寄存器的名字都被保存了下来。

  • EAX
  • EBX
  • ECX
  • EDX
  • EDI
  • ESI
  • EBP
  • ESP

  上面这 8 个寄存器之中,前面七个都是通用的。ESP 寄存器有特定用途,保存当前 Stack 的地址(详见下一节)。

  我们常常看到 32 位 CPU、64 位 CPU 这样的名称,其实指的就是寄存器的大小。32 位 CPU 的寄存器大小就是 4 个字节。

  五、内存模型:Heap

  寄存器只能存放很少量的数据,大多数时候,CPU 要指挥寄存器,直接跟内存交换数据。所以,除了寄存器,还必须了解内存怎么储存数据。

  程序运行的时候,操作系统会给它分配一段内存,用来储存程序和运行产生的数据。这段内存有起始地址和结束地址,比如从0x10000x8000,起始地址是较小的那个地址,结束地址是较大的那个地址。

  程序运行过程中,对于动态的内存占用请求(比如新建对象,或者使用malloc命令),系统就会从预先分配好的那段内存之中,划出一部分给用户,具体规则是从起始地址开始划分(实际上,起始地址会有一段静态数据,这里忽略)。举例来说,用户要求得到 10 个字节内存,那么从起始地址0x1000开始给他分配,一直分配到地址0x100A,如果再要求得到 22 个字节,那么就分配到0x1020

  这种因为用户主动请求而划分出来的内存区域,叫做 Heap(堆)。它由起始地址开始,从低位(地址)向高位(地址)增长。Heap 的一个重要特点就是不会自动消失,必须手动释放,或者由垃圾回收机制来回收。

  六、内存模型:Stack

  除了 Heap 以外,其他的内存占用叫做 Stack(栈)。简单说,Stack 是由于函数运行而临时占用的内存区域。

  请看下面的例子。

int main () {

int a = 2;

int b = 3;

}

  上面代码中,系统开始执行main函数时,会为它在内存里面建立一个帧(frame),所有main的内部变量(比如ab)都保存在这个帧里面。main函数执行结束后,该帧就会被回收,释放所有的内部变量,不再占用空间。

  如果函数内部调用了其他函数,会发生什么情况?

int main () {

int a = 2;

int b = 3;

return add_a_and_b(a, b);

}

  上面代码中,main函数内部调用了add_a_and_b函数。执行到这一行的时候,系统也会为add_a_and_b新建一个帧,用来储存它的内部变量。也就是说,此时同时存在两个帧:mainadd_a_and_b。一般来说,调用栈有多少层,就有多少帧。

  等到add_a_and_b运行结束,它的帧就会被回收,系统会回到函数main刚才中断执行的地方,继续往下执行。通过这种机制,就实现了函数的层层调用,并且每一层都能使用自己的本地变量。

  所有的帧都存放在 Stack,由于帧是一层层叠加的,所以 Stack 叫做栈。生成新的帧,叫做"入栈",英文是 push;栈的回收叫做"出栈",英文是 pop。Stack 的特点就是,最晚入栈的帧最早出栈(因为最内层的函数调用,最先结束运行),这就叫做"后进先出"的数据结构。每一次函数执行结束,就自动释放一个帧,所有函数执行结束,整个 Stack 就都释放了。

  Stack 是由内存区域的结束地址开始,从高位(地址)向低位(地址)分配。比如,内存区域的结束地址是0x8000,第一帧假定是 16 字节,那么下一次分配的地址就会从0x7FF0开始;第二帧假定需要 64 字节,那么地址就会移动到0x7FB0

  七、CPU 指令

  7. 1 一个实例

  了解寄存器和内存模型以后,就可以来看汇编语言到底是什么了。下面是一个简单的程序example.c

int add_a_and_b(int a, int b) {
   return a + b;
}

int main () {
   return add_a_and_b(2, 3);
}

  gcc 将这个程序转成汇编语言。

$ gcc -S example.c

  上面的命令执行以后,会生成一个文本文件example.s,里面就是汇编语言,包含了几十行指令。这么说吧,一个高级语言的简单操作,底层可能由几个,甚至几十个 CPU 指令构成。CPU 依次执行这些指令,完成这一步操作。

  example.s经过简化以后,大概是下面的样子。

_add_a_and_b:
   push   %ebx
   mov    %eax, [%esp+8] 
   mov    %ebx, [%esp+12]
   add    %eax, %ebx 
   pop    %ebx 
   ret  

_main:
   push   3
   push   2
   call   _add_a_and_b 
   add    %esp, 8
   ret

  可以看到,原程序的两个函数add_a_and_bmain,对应两个标签_add_a_and_b_main。每个标签里面是该函数所转成的 CPU 运行流程。

  每一行就是 CPU 执行的一次操作。它又分成两部分,就以其中一行为例。

push   %ebx

  这一行里面,push是 CPU 指令,%ebx是该指令要用到的运算子。一个 CPU 指令可以有零个到多个运算子。

  下面我就一行一行讲解这个汇编程序,建议读者最好把这个程序,在另一个窗口拷贝一份,省得阅读的时候再把页面滚动上来。

  7. 2 push 指令

  根据约定,程序从_main标签开始执行,这时会在 Stack 上为main建立一个帧,并将 Stack 所指向的地址,写入 ESP 寄存器。后面如果有数据要写入main这个帧,就会写在 ESP 寄存器所保存的地址。

  然后,开始执行第一行代码。

push   3

  push指令用于将运算子放入 Stack,这里就是将3写入main这个帧。

  虽然看上去很简单,push指令其实有一个前置操作。它会先取出 ESP 寄存器里面的地址,将其减去 4 个字节,然后将新地址写入 ESP 寄存器。使用减法是因为 Stack 从高位向低位发展,4 个字节则是因为3的类型是int,占用 4 个字节。得到新地址以后, 3 就会写入这个地址开始的四个字节。

push   2

  第二行也是一样,push指令将2写入main这个帧,位置紧贴着前面写入的3。这时,ESP 寄存器会再减去 4 个字节(累计减去8)。

  7. 3 call 指令

  第三行的call指令用来调用函数。

call   _add_a_and_b

  上面的代码表示调用add_a_and_b函数。这时,程序就会去找_add_a_and_b标签,并为该函数建立一个新的帧。

  下面就开始执行_add_a_and_b的代码。

push   %ebx

  这一行表示将 EBX 寄存器里面的值,写入_add_a_and_b这个帧。这是因为后面要用到这个寄存器,就先把里面的值取出来,用完后再写回去。

  这时,push指令会再将 ESP 寄存器里面的地址减去 4 个字节(累计减去 12)。

  7. 4 mov 指令

  mov指令用于将一个值写入某个寄存器。

mov    %eax, [%esp+8] 

  这一行代码表示,先将 ESP 寄存器里面的地址加上 8 个字节,得到一个新的地址,然后按照这个地址在 Stack 取出数据。根据前面的步骤,可以推算出这里取出的是2,再将2写入 EAX 寄存器。

  下一行代码也是干同样的事情。

mov    %ebx, [%esp+12] 

  上面的代码将 ESP 寄存器的值加 12 个字节,再按照这个地址在 Stack 取出数据,这次取出的是3,将其写入 EBX 寄存器。

  7. 5 add 指令

  add指令用于将两个运算子相加,并将结果写入第一个运算子。

add    %eax, %ebx

  上面的代码将 EAX 寄存器的值(即2)加上 EBX 寄存器的值(即3),得到结果5,再将这个结果写入第一个运算子 EAX 寄存器。

  7. 6 pop 指令

  pop指令用于取出 Stack 最近一个写入的值(即最低位地址的值),并将这个值写入运算子指定的位置。

pop    %ebx

  上面的代码表示,取出 Stack 最近写入的值(即 EBX 寄存器的原始值),再将这个值写回 EBX 寄存器(因为加法已经做完了,EBX 寄存器用不到了)。

  注意,pop指令还会将 ESP 寄存器里面的地址加4,即回收 4 个字节。

  7. 7 ret 指令

  ret指令用于终止当前函数的执行,将运行权交还给上层函数。也就是,当前函数的帧将被回收。

ret

  可以看到,该指令没有运算子。

  随着add_a_and_b函数终止执行,系统就回到刚才main函数中断的地方,继续往下执行。

add    %esp, 8 

  上面的代码表示,将 ESP 寄存器里面的地址,手动加上 8 个字节,再写回 ESP 寄存器。这是因为 ESP 寄存器的是 Stack 的写入开始地址,前面的pop操作已经回收了 4 个字节,这里再回收 8 个字节,等于全部回收。

ret

  最后,main函数运行结束,ret指令退出程序执行。

  八、参考链接

  • Introduction to reverse engineering and Assembly, by Youness Alaoui
  • x86 Assembly Guide, by University of Virginia Computer Science

您可能还会对下面的文章感兴趣: